Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0606920220300040360
Biomolecules & Therapeutics
2022 Volume.30 No. 4 p.360 ~ p.367
Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects
Lee Hyo-Jeong

Moon Yeon-Gyu
Choi Jung-Il
Heo Jeong-Doo
Kim Se-Kwang
Nallapaneni Hari Krishna
Chin Young-Won
Lee Jong-Kook
Han Sun-Young
Abstract
Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase C¥ã, and ERK1/2. Furthermore, KRC-108 exhibited anti-tumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.
KEYWORD
Tropomyosin receptor kinase A, Neurotrophic receptor kinase 1 fusion, KRC-108, Colon cancer
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed